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1 INTRODUCTION

The hydrodynamic instability of jet flows from a
steady source is the key reason for their nonstationary
modes. It was found that two lower oscillation modes
predominate on a jet with a circular cross section,
namely an axisymmetric (varicose) mode and a spiral
(helical) one [1–3]. The authors of [4–7] theoretically
proved and experimentally verified that the axisym�
metric mode is the most unstable (when compared to
other modes) near the outlet, where the thickness of
the shear layer of the jet flow is smaller than its radius.
On the contrary, the theory of the hydrodynamic
instability of plane�parallel jet flows with the velocity
profiles simulating the flow in a jet at a large distance
from the source shows that the helical mode is unsta�
ble [8]. This conclusion was verified by an experiment
where the jet was subjected to a periodic external
action. However, a number of experiments [9–12]
show that the spiral mode is not always predominant:
axisymmetric coherent structures are observed along
with the spiral mode at large distances from the source.

Such peculiarities of jet flows were observed in the
experiments on studying the nonstationary dynamics
of turbulent forced jets in a stratified fluid described in

1 E. V. Ezhova, D. A. Sergeev, A. A. Kandaurov, et al., “Nonsta�
tionary Dynamics of Submerged Turbulent Axisymmetric Jets in
a Stratified Fluid. Part 1: Experimental Study,” Izv., Atmos.
Ocean. Phys. 48 (4), 461–470 (2009).

Section 1 of [13]. The experiments were staged in the
Large Thermally Stratified Tank (LTST) at the Insti�
tute of Applied Physics of the Russian Academy of
Sciences. A jet with a density equal to the density of
the lower stratification layer escaped a hole with the
circular cross section upright with an initial pulse. In
this case, a fountain (a jet with negative buoyancy and
a nonzero vertical pulse) was formed in the ther�
mocline region. The fountain dynamics was studied
using underwater video recording. Data processing
pointed to the predominant excitation of an axisym�
metric mode of the fountain, leading to the intensive
generation of internal waves. The necessary condition
for the instability of a jet with a circular cross section
with respect to an axisymmetric perturbation is an
analog of the Rayleigh criterion for the instability of
plane�parallel flows:

 

where  is the profile of the average longitudinal
velocity in the jet. The measurements described in
Section 1 showed that the instability criterion is not
met for the jet observed in the experiment; however, an
axisymmetric mode is excited on it.

Real jet flows are nonparallel; however, as a rule,
this fact does not play any important role for different
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applications, since the radial velocity of the flow turns
out to be small as compared to the longitudinal one
[14]. Nevertheless, the nonparallelism of the flow
turns out to be the factor that determines the stability
of an axisymmetric mode. For example, the authors of
[15] studied the spatial instability of a submerged Landau
jet whose radius increases downstream and showed that
the axisymmetric mode became unstable. The jet with a
circular cross section considered in this paper is also
nonparallel, and one can expect the development of an
axisymmetric mode in it. This section considers the tem�
poral instability of the axisymmetric mode of a nonparal�
lel flow with self�similar velocity profiles, estimates the
frequency of this mode near the thermocline, and
compares it with the frequency of internal waves mea�
sured in the experiment.

The experiment described in Section 1 showed that
the jet oscillation spectrum always has a pronounced
maximum that corresponds to an axisymmetric mode,
while a spiral mode predominates in the experiments
for studying the instability of turbulent jets in a homo�
geneous fluid at some distance from the source. This
peculiarity can be related to the development of a self�
oscillation regime of a varicose mode on the flow with
a counterflow generated in a ring�shaped region
around the main flow in the thermocline. It was shown
in [16, 17] that a counterflow in plane�parallel and
weakly nonparallel flows can lead to the development
of absolute instability and self�oscillations. This paper
discusses the possibility of the development of a self�
oscillation regime of an axisymmetric mode in a non�
parallel jet in the vicinity of a thermocline.

The paper is structured as follows. Section 1 gives
an approximation of the average jet flow observed in

the experiment of [13]. Section 2 studies its stability in
the approximation suggested in [15, 18, 19]. Section 3
discusses the conditions for the development of abso�
lute instability in a jet.

1. APPROXIMATION OF THE AVERAGE 
VELOCITY PROFILE OF THE JET FLOW

To obtain average velocity profiles in a jet, the
instantaneous fields of the longitudinal and transverse
velocity calculated from experimental data were aver�
aged over the video recording time (20 min) [13]. Each
profile of the longitudinal and transverse velocity was
normalized to the maximal longitudinal velocity W0
and the lateral scale R0, which was determined by an
e�fold decrease in the maximum transverse velocity. A
family of normalized profiles is shown in Fig. 1. The
average profiles of the longitudinal velocity before the
jet entrance to the thermocline have a typical bell�like
shape, and a counterflow is formed in the thermocline
region. The average radial velocity is positive inside the
jet; i.e., an outflow of the fluid from the jet axis yield�
ing its expansion is observed, while beyond the jet the
velocity is negative, which corresponds to the turbu�
lent entrainment of the fluid.

The dependences of R0 and W0 on the coordinate
along the jet are shown in Fig. 2. They are well approx�
imated with self�similar dependences R0 = εx (ε = 0.1),
W0 = β/x (β = 600 cm2/s for the experiment with an
output velocity of 150 cm/s; β = 554 cm2/s for the
experiment with an output velocity of 110 cm/s).
Thus,
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Fig. 1. Normalized profiles of the average longitudinal (left) and transverse (right) velocity.
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Let us introduce the self�similar coordinate 

The profile of the longitudinal velocity was approxi�
mated using an exponential function of the type

(2)

To determine the radial velocity profile corre�
sponding to such transverse velocity profile, we con�
sider the equation of continuity in cylindrical coordi�
nates:

(3)

Let us substitute the self�similar solution of type (2)
into Eq. (3) and turn to self�similar variables

 Then, Eq. (3) will take the form

(4)

Substituting the function approximating longitudi�
nal velocity profile (2), into Eq. (4) and taking into
account condition  we obtain

(5)

The average longitudinal velocity profiles approxi�
mated by the exponential function are shown in Fig. 3.
It can be seen from the figure that the exponential
function adequately approximates the experimental
profiles of the turbulent jet velocity.
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2. CALCULATION OF THE STABILITY 
OF THE AXISYMMETRIC MODE

OF A NONPARALLEL FLOW

To investigate the stability of the velocity profile
specified by function (2), we use equation of continu�
ity (3) and turn to the vorticity and the stream function
variables:

(6)

Let us consider the set of equations of hydrody�
namics of a viscous incompressible fluid in cylindrical
coordinates:

(7)

(8)

A self�similar solution in the vorticity and stream
function variables has the form

(9)

Let us turn to the self�similar variables 

introduce the variable  as in [15, 18, 19] and
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Fig. 2. Diagonal scale (right) and the maximum longitudinal velocity (left) of the jet as a function of the distance along it for exper�
iments with the velocities of the fluid outflow from holes of 110 and 150 cm/s.
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search for the solution of nonstatonary equations (7)–
(8) in the form

(10)

Then, the set of equations for f and χ will take the form

(11)

(12)
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The fact that Eqs. (11) and (12) contain terms propor�
tional to τ and τ2 gives no way of studying stability
using the method of normal modes. We use the
approximation used in [15, 18, 19]: the problem is
considered for 0 < t < T, where T is a finite time of flow
evolution within the limits of applicability of linear�
ized equations. Then, we have 0 < τ < νT/x2 and τ → 0
as x → ∞. In this approximation, the terms propor�
tional to τ and τ2 in Eqs. (11) and (12) can be
neglected. Then, we obtain the following set of equa�
tions:
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Let us use the change of variables  and
search for the solution to the set of Eqs. (13) and (14) in
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Fig. 3. Approximation of velocity components. The longitudinal velocity is on the left; the radial velocity is on the right.
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In the linear approximation over ε, the set of Eqs. (13)
and (14) takes the form

(15)

 

(16)

The solution to the set of Eqs. (15) and (16) is sought
in the form

(17)

We obtain

(18)

(19)

 

The boundary conditions for an axisymmetric mode
follow from

(i) the equality of the radial velocity on the jet axis
to zero,
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(ii) the equality of the tangential stress on the jet
axis to zero,

(21)

(iii) the condition of a decrease in perturbations of
the average flow at infinity

(22)

The set of Eqs. (18) and (19) with boundary condi�
tions (10)–(22) at a fixed α represents a problem for
the eigenfunctions  and the eigenvalue ω. For the
numerical solution of the problem, it is convenient to
introduce new variables

and notations

(23)

Then, the set of Eqs. (18) and (19) is written as 
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Using conditions (28), we obtain the following
equation to find the eigenvalue ω

(29)

The estimated Reynolds number, determined by
molecular viscosity, is 6000 for the parameters of the
experiment However, it can decrease by several orders
of magnitude due to turbulent viscosity. The results of
a calculation of the axisymmetric mode stability at the
Reynolds number of 50 are presented in Fig. 4. It can
be seen that at small convergence parameters the axi�
symmetric mode becomes stable, and the mode incre�
ment also increases with its growth. Figure 5 shows the
boundary of the stability region in the plane of the
parameters ( ) at ε = 0.1.

To understand the reason for the development of an
unstable axisymmetric mode on a nonparallel flow, we
consider the law of conservation of the kinetic energy

 of a liquid particle in cylindrical coordi�

nates in the form suggested in [2]:
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particle energy are related to
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(1) diffusion described by the first term in the right�
hand side,

(2) the energy transfer from the average flow to per�
turbations (31),

(3) losses of the kinetic energy for the transfer of the
liquid particle from low� to high�pressure region (or
the energy increment if otherwise) (32),

(4) viscous losses (33).

We focus on the last term in Eq. (31), which van�

ishes if the flow is plane�parallel. At , this term

leads to an increase in the kinetic energy of the liquid
particle. Thus, due to the nonparallelism of the flow
(in particular, gue to the jet deceleration effect), an
additional radiation force arises that is responsible for
transferring the energy from the average flow to per�
turbations.
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Let us estimate the frequency of the varicose mode
for the data of the experiment. Note that the eigen�
value ω is related to the physical frequency Ω by the
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physical frequency to  then, we have  =

 The dispersion curves for Re = 50 are shown in

Fig. 4. It can be seen that the mode with the dimen�
sionless frequency of 0.22 will be the most unstable.
According to the experimental data, near the ther�

mocline,  ≈ 0.8–1.1 s–1. Then, the frequency of the

0

0

;
W
R 0 0W R

Ω

2

.
Re
ε

ω

0

0

W

R

most unstable mode is in the range of 0.028–0.039 Hz;
i.e., it is close to the frequency of the peaks of the
internal waves spectra (0.032–0.04 Hz).

On the other hand, it has been shown in Section 1
that the upper boundary of the jet also oscillates with a
frequency close to the frequency of internal waves.
The jet in the lower part of the thermocline and above
the thermocline oscillates at one and the same fre�
quency. This makes it possible to assume that an unsta�
ble global mode localized in the thermocline region
and leading to a self�oscillation regime can develop on
the jet. The underwater video recording makes it pos�
sible to study the spectra of oscillations of the axisym�
metric mode in different cross sections along the jet
(Fig. 6). It can be seen from the figure that the pertur�
bation at a frequency close to 0.04 Hz is present in all
spectra. This counts in favor of the assumption on the
excitation of the global mode in this system [17].

It was shown in [17] that a necessary condition for
an increase in the unstable global mode on the jet flow
is its absolute instability in some finite region along the
direction of the jet propagation. A counterflow on the
average velocity profiles can serve as a reason for the
development of the absolute instability of the plane�
parallel and weakly nonparallel jet flow [17, 21]. The
counterflow can be easily seen on the jet velocity pro�
files in the thermocline region (Fig. 7).

Let us qualitatively analyze the stability of the
diverging flow, whose longitudinal velocity profiles
coincide with the experimentally measured ones (see
Fig. 7), where the divergence parameter is 0.35 and the
Reynolds number is 300. The velocity profiles are
approximated well by a function of the type

where  are the constants (for the velocity pro�
files in Fig. 7 see the table).

Let us use the Briggs criterion [22, 23], according
to which the instability will be absolute if the imagi�
nary part of the absolute frequency is positive and will
be convective if it is negative. The absolute frequency
is determined from the condition of equality of the
complex group velocity of the perturbation to zero

 and it corresponds to the saddle point in the

( )
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Fig. 6. The spectra of radius oscillations for four cross sec�
tions of the jet in the thermocline vicinity.

Table 

Profile no. а1 а2 а3 а4 а5 а6

1 0.13 2.16 2.0 0.58 1.13 0.062

2 0.31 1.45 2.0 0.49 1.31 0.058

3 0.20 1.38 2.0 0.56 1.19 0.049

4 0.20 1.24 2.0 0.56 1.20 0.044

5 0.20 1.00 2.0 0.59 1.20 0.041

6 0.20 1.00 2.00 0.58 1.21 0.037
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Fig. 7. Approximation of the profiles of the longitudinal jet velocity in the upper part of the thermocline. The least counterflow
(1) corresponds to the velocity profile in the jet cross sections positioned at 1/4 of the thermocline depth upward from its center.
The intensification of the counterflow corresponds to successive profiles (2)–(6), which are 1 cm apart along the jet propagation
direction.
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complex plane of wavenumbers. For our problem, this

condition takes the form  Figure 8 shows the

level curves of the real and imaginary parts of the fre�
quency on the complex plane ( ) in the sad�
dle�point vicinity for profile 3.

The dependence of the imaginary part of the abso�
lute frequency for the longitudinal velocity profiles
shown in Fig. 7 is plotted in Fig. 9. The minimal incre�
ment corresponds to velocity profile 1 with the least
counterflow. It can be seen from the figure that the
imaginary part of the absolute frequency becomes pos�
itive when the counterflow on the profiles of the jet
longitudinal velocity intensifies. This means that the
jet flow in the upper part of the thermocline is abso�
lutely unstable. It was shown in [17] that the finite sec�
tion of the absolute instability along the jet propaga�
tion direction is a necessary condition for the exist�
ence of the global mode. This condition is met for the
flow in the upper part of the thermocline (see Fig. 9)
and, thus, an unstable axisymmetric global mode can
increase in this jet region, which confirms the conclu�
sions on its excitation made experimental data.

CONCLUSIONS

The nonstationary dynamics of axisymmetric tur�
bulent jets leading to the generation of internal waves
was studied on the basis laboratory simulation at the
LTST at the Institute of Applied Physics of the Russian
Academy of Sciences. During the experiment, the jet
in the thermocline was recorded using an underwater
survey. Based on its results, the instantaneous velocity

0.∂ω
=

∂α

Re ,Imα α

fields in the longitudinal jet cross section were mea�
sured using the PIV technique and the oscillations of
the jet boundaries were analyzed. The simultaneous
temperature measurements performed on different
levels revealed intensive oscillations. A comparison of
the internal wave spectra with the spectra of the jet
oscillations in the thermocline region confirmed that
the jet serves as a source of internal waves. Based on
measured velocity data, we conducted a mode analysis
of perturbations on the jet and showed that the axi�
symmetric mode is predominantly excited. The analy�
sis of the hydrodynamic stability of the jet flow with a
constant cross section and the velocity profiles simu�
lating a flow near the thermocline showed that the axi�
symmetric mode is stable. The stability of the axisym�
metric mode of the diverging jet flow with self�similar
velocity profiles was studied. It was shown that the
nonparallelism of the flow leads to instability of the
axisymmetric mode. The estimated frequencies of the
axisymmetric mode for the parameters corresponding
to the conditions of the experiment are in agreement
with the frequency of the maximum in the internal
wave spectra. Based on an analysis of the experimental
data, it was demonstrated that an axisymmetric mode
is developed at one frequency (namely, the frequency
of generation) in different cross sections of the jet in
the thermocline vicinity, which points to the excita�
tion of a globally unstable mode. This phenomenon
was theoretically substantiated; in particular, it was
shown that the counterflow on the profiles of the lon�
gitudinal jet velocity in the upper part of the ther�
mocline causes the absolute instability of the flow
required for the development of a global mode and the
transition of the system to self�oscillations.
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